Sharp Estimates for Schrödinger Groups on Hardy Spaces for $$0<p\le 1$$

نویسندگان

چکیده

Abstract Let X be a space of homogeneous type with the doubling order n . L nonnegative self-adjoint operator on $$L^2(X)$$ L 2 ( X ) and suppose that kernel $$e^{-tL}$$ e - t satisfies Gaussian upper bound. This paper shows for $$0<p\le 1$$ 0 < p ? 1 $$s=n(1/p-1/2)$$ s = n / , $$\begin{aligned}\Vert (I+L)^{-s}e^{itL}f\Vert _{H^p_L(X)} \lesssim (1+|t|)^{s}\Vert f\Vert \end{aligned}$$ ? I + itL f H ? | all $$t\in {\mathbb {R}}$$ ? R where $$H^p_L(X)$$ is Hardy associated to recovers classical results in particular case when $$L=-\Delta $$ ? extends number known results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp estimates for the p-adic Hardy type operators on higher-dimensional product spaces

In this paper, we introduce the p-adic Hardy type operator and obtain its sharp bound on the p-adic Lebesgue product spaces. Meanwhile, an analogous result is computed for the p-adic Lebesgue product spaces with power weights. In addition, we characterize a sufficient and necessary condition which ensures that the weighted p-adic Hardy type operator is bounded on the p-adic Lebesgue product spa...

متن کامل

Cauchy–Szegö kernels for Hardy spaces on simple Lie groups

For any simple real group G possessing unitary highest weight representations one can define the Hardy space H(G) . This is a Hilbert space formed by holomorphic functions in a ‘non–commutative’ tube domain Γ satisfying a Hardy–type condition (Γ is the interior of a non– commutative complex semigroup Γ containing the group G ). The space H(G) is identified with the bi–invariant subspace of L(G)...

متن کامل

Sharp Estimates of the Embedding Constants for Besov Spaces

Sharp estimates are obtained for the rates of blow up of the norms of embeddings of Besov spaces in Lorentz spaces as the parameters approach critical values.

متن کامل

Sharp Homology Decompositions for Classifying Spaces of Finite Groups

where D is some small category, F is a functor from D to the category of spaces, and, for each object d ∈ D, F (d) has the homotopy type of BH for some subgroup H of G. The operator “hocolim” is the homotopy colimit in the sense of Bousfield and Kan [4], which amounts to a homotopy invariant method of gluing together the values of the functor F according to the pattern of the maps in D. There i...

متن کامل

Translation Invariant Operators on Hardy Spaces over Vilenkin Groups

We show that a number of well known multiplier theorems for Hardy spaces over Vilenkin groups follow immediately from a general condition on the kernel of the multiplier operator. In the compact case, this result shows that the multiplier theorems of Kitada [6], Tateoka [13], Daly-Phillips [2], and Simon [11] are best viewed as providing conditions on the partial sums of the Fourier-Vilenkin se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fourier Analysis and Applications

سال: 2022

ISSN: ['1531-5851', '1069-5869']

DOI: https://doi.org/10.1007/s00041-022-09964-0